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SUMMARY OF CONTRACT WORK

Early in the contract period much effort was

spent trying to approach the minimum distance braking

without excessive tire wear problem as an optimal

regulator problem with unknown disturbance. No sig-

nificant results were obtained even when the disturbance

was assumed known. Effort was then diverted to develop-

ment of an adaptive, peak-riding controller in order to

produce some practical, near-optimal results which was

the primary charge of the contract.

The main body of this report describes the peak-

riding, adaptive controller designed to provide minimum

distance braking of vehicles which obtain their decelera-

tion from frictional forces between the tire and pavement.

Organization of this part of the final report is dis-

cussed in the Introduction.

Simulation studies were made on the IBM 360/50

with CSMP and on the UMR TR-48/SCC-650 hybrid computer.

CSMP was used to study not only the rigid body and strut

bending dynamics of a braking airplane, but also the

tire to wheel rotational dynamics which forced the time'

steps to be in the order of milli-seconds. Hence, the
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average landing cost about $25 in cpu time, not including

the cost of data plotting.

As the computer funds rapidly disappeared, the

analog computer program was developed. All simulation

results in the final report were obtained from the TR-48/

SCC-650 hybrid computer. Complete details of the analog

simulation are reported in Appendix A. Real-time results

were displayed on an oscilloscope. To produce X-Y plots

for the report, a time scale factor of 50 was used. Landing

time was then about 3 minutes, still faster than CSMP compute

time.

Numerous simulation runs were made, each providing

additional information about the performance of the system.

Significant results not covered in the main body of the

report are discussed in Appendix B.

Early in the contract, an apparent anomaly was dis-

covered in mu-slip data normally assumed by investigators

of braking systems. Appendix C presents a possible explana-

tion of the anomaly, although experimentation is necessary

prior to drawing any conclusions about the hypothesis in

Appendix C.
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RECOMMENDATIONS

Since the controller developed during this study is

applicable to most of the significant modes of transporta-

tion in the United States (e.g. airplane, auto, truck, train,

and motorcycle), an experimental braking system should be

developed and tested for at least one of the above vehicles.

Safety of passengers, crew, and innocent victims of accidents

resulting from loss of vehicle control during braking is the

primary justification for continued research in this area.

Further investigation of the particular system described in

this report is warranted because minimum distance braking is

provided without skid; whereas, typical anti-skid schemes

merely prevent skid by releasing the brake on any wheel

approaching wheel lock-up which most likely sacrifices sig-

nificant braking distance.

Further research into mu-slip characteristics between

tire and pavement is necessary. Such research should provide

a clear understanding of the basic physical phenomena occuring

between tire and pavement. Such understanding should be

substantiated by accurate experimental measurements, where

all assumptions are properly validated by calibrated measure-

ments.
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ADAPTIVE BRAKING SYSTEM

Introduction

This report presents a new approach to the problem of braking

a vehicle in minimum distance. To brake in minimum distance, the

tire slip must be controlled to ride the peak of the mu-slip curve

so that maximum ground force is developed between tire and pavement.

The resulting control system differs from anti-skid systems which

merely react to impending wheel lockup.

In Part I, a simplified model is presented to permit develop-

ment of a sound control strategy. Lyapunov techniques are used to

derive a peak-riding adaptive controller applicable to each wheel

of a braking vehicle.

In Part II, the controller is applied to a more sophisticated

model of a braking airplane with strut bending dynamics included.

Simulation results verify the peak-riding property of the controller

and the rapid adaption of the controller to extreme runway conditions

(i.e., wet-dry-wet).

In Part III, practical considerations are discussed including

the effect of actuator dynamics, perturbation frequency, type and

location of sensors, absence of a free wheel, and a method in which

the pilot's braking commands can be interfaced with the peak riding

system.
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I. Development of A Peak Riding Adaptive Controller.

Simplified Model

Consider the problem of braking a vehicle which is moving on a

single wheel along the earth's surface by applying a torque to the

rolling wheel (see Figure 1). Equations of motion for this sim-

plified model (neglecting rotational dynamics of the mass) are

v = -f/M (1)

w = fR/I - T/I. (2)

The ground force f is related to the coefficient of friction be-

tween the tire and pavement p and the weight of the vehicle by

f = pgM. (3)

However, studies have indicated that p depends not only on surface

conditions (i.e., dry, wet), but also upon the relative velocity

between the tire and pavement, or slip-velocity, y, given by:

y = v - wR. (4)

Typical curves for p vs. y are given in Figure 2. Although various

experimental measurements of mu-slip curves have produced many

different shape curves, it is generally agreed that for most sur-

face conditions and rolling velocities, the peak value of p occurs

at some non-zero slip velocity and that higher slip velocities will

result in decreased p (i.e., the negative slope region of curve does

indeed exist). The slip at which the peak p occurs is referred to

as the point of incipient skid, yp.

To achieve minimum distance braking, maximum deceleration of

the vehicle, which is synonymous with peak p, must be obtained.

Thus, slip velocity must be controlled in some manner that causes
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peak p to be developed between tire and pavement. The slip con-

troller must necessarily be adaptive and self-optimizing since

neither p nor y are known. Furthermore, Dp and yp are dependent

upon surface conditions, temperature, tire inflation, etc., and

thus can be expected to vary throughout any particular braking

trajectory.

Slip Controller

To examine the problem of controlling slip velocity, equations

(1) through (3) can be substituted into the derivative of (4) to

obtain

y = -al(y) + g (5)

where

a = g(l+Mv) and X = RT /I.

Equation (5) can be considered a first-order process with nonlinear

feedback. The control input B must be constrained such that B>0

when the wheel is rotating in the positive direction since conven-

tional brakes can only decelerate the wheel and hence increase

slip-velocity. This dynamic process is pictured in Figure 3.

Since y must be controlled in order to ride the peak of the

p-y curve, let us first design a controller which will keep y

arbitrarily close to some set point y. Using Lyapunov design

techniques, an appropriate Lyapunov function is:

2V = 1(y-y) (6)

If y is constant, then (5) into the derivative of (6) produces

V = (y-y) (ap-) . (7)

Now can 8 be chosen so that V is negative definite in (y-y)? A
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first attempt may be to choose a large in magnitude, so that it

overrides the ap term, and identical in sign to y-y. In light of

this, along with the constraint ~0Q, a choice which deserves further

analysis is:

0 for y>y fG(y-y) for y ¥y (8)

Equation (8) into (7) provides:

ap(y-y)<O for y>y
V 0 >0 for y- <Y<Y' .

-(y-y) [G(y-y)-ap] for y- 

<O for y<y- ap(9)G (9)

From (9), we can conclude that y approaches one of two equilibrium

points: either y=y or y- a-, as shown in Figure 4. Actually, these

two points can be made arbitrarily close by choosing G>>ap. Thus,

if y is the set point for slip velocity, then y will converge

arbitrarily close to y.

Peak-Riding Controller

If the mu-slip curve of Figure 2a is differentiated with respect

to y, as shown in Figure 5, then clearly y must be adjusted accord-

ing to the sign of p/a3y in order that yp be reached. Since y is

the setpoint for y, we can choose sgn y = sgn a3/9y thus assuring

that y approaches a value which forces 3p/3y = 0 or y = yp.

Unfortunately, the sign of 3p/3y is not known, nor is yp.

However, so long as y O 0 (i.e., slip velocity is not constant),

the sign of 3a/3y can be obtained from i and y. Under the assumption



5

that the mu-slip curve is stationary (i.e., 3p/Dt = 0):

P = y y. (10)

Multiplying (10) by y and equating signs gives:

sgn Py = sgn y for y f O. (11)

Thus, y can be automatically adjusted to force y closer to yp by:

Y = Kpy. (12)

Actually, ~ and y are not available. However, approximate deriva-

tive filters used on measured signals should provide satisfactory

results since only the signs of the estimated derivatives need be

accurate for correct adjustment.

The convergence of y to the desired value requires y # 0,

which can be implemented by adding a small perturbation signal

6 to (8)

B 0 IOfor y > y + 6}

G(y-y+6) for y < y + 6

(8)*
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II. Application With Simulation Results.

Braking Airplane Model

The results of the previous section will now be applied to

a model of a braking airplane similar to that of Figure 1 except

that strut bending dynamics are included in the model shown in

Figure 6. Equations of motion are:

v = -gP(y) (13)

Iw = MgR p(y) - T (14)

Msz + C z + K sz = Mgp(y) + KTT (15)

y = v - Rw - z, (16)

where z is the strut horizontal displacement due to cantilever

bending caused by ground force f and brake torque T. M
s
, C

s
, K

s
,

and KT are strut parameters [1], while all other symbols retain

their previous definitions. Brake torque T is assumed to be

proportional to brake pressure P and must oppose the rotation w.

With the sign convention of Figure 6, we can let:

T = (Kb sgn w) P (17)

where brake pressure is now the control input for braking the

airplane.

Controller

Analogous to equation (8)* and (12), the controller is defined

as

P = G(y-y+6), PPmax (18)max

Y = Kpy, 0Y-_Ymax (19)

A .'
where p and y are estimates of w and y derived from the following

filters
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= K (p-p) (20)

y = K (y-y) (21)

The Gains on p and y can be limited before entering equation (19)

which in turn bounds y. Bounding y has no theoretical significance,

since only the sign of py is important.

Brake pressure, from a practical viewpoint, must be held be-

tween limits such as those specified in (18). Similarly, y should

be held between the limits specified in (19). The lower limit on

y is advisable since the peak mu will always fall to the right of

y = 0. The upper limit ymax can be chosen to prevent excessive

slip-velocity and consequently tire wear in the event that a peak

mu does not exist or is far to the right on the mu-slip curve.

Essentially, ymax prevents the system from operating in the region

Y > Ymax except for brief transients at touch down.

Simulation Results

A simulation diagram of equations (13) through (21) is shown in

Figure 7. A detailed analog computer diagram, complete with scaling

information, is shown in Appendix A. Note that two mu-slip curves

are available, one simulating dry pavement conditions and the other

wet.

Time histories of mu-slip for an elapsed time of 0.8 seconds

from touch down are shown in Figures 8 and 9. In Figure 8, the

system operates on wet pavement for the first 0.4 seconds at which
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time an abrupt change to dry pavement occurs. The wheel velocity

is zero at touch down, hence operation begins at full slip velocity

in the lower right-hand corner of Figure 8. In Figure 9, the dry

pavement is encountered first, followed by the wet pavement 0.4

seconds after touch down. Note that the time axis is reversed on

Figure 9 and that the trajectory begins in the upper right-hand

corner. Examination of these figures shows the excellent peak

riding capabilities of this system, together with rapid adaption to

sudden change in pavement conditions. Table 1 specifies all para-

meter values used in the simulation.
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g = 32.2 ft/sec2 acel of gravity

Mg = 10,000 lbs wt of airplane Rigid Body

R = 1 ft tire radius Parameters

I = 2 lb-ft-sec tire inertia

Ms = 10 lb-sec /ft strut mass

C
s
= 98 lb-sec/ft strut damping Strut

Ks = 6,000 lbs/ft strut spring constant Parameters

K
T

= .15 ft- 1

P = 0.85 peak muP dry

P wet = 0.24 peak mu Mu-slip

P dry = 12 ft/sec slip velocity at p Curve Data

Yp wet = 37 ft/sec slip velocity at p

ap = 2.5 ft/sec perturbation amplitude Perturbation

tP = 12.5 msec perturbation period Signal
(80 hz freq)

Kb = 1 ft3 torque/pressure brake
constant

3 Controller
G = 3,000 lb-sec/ft pressure/velocity Parameters

controller gain

P = 20,000 lbs/ft pressure limit
max

K = 0.4 sec peak-riding adaption
gain

Ymax = 60 ft/sec slip-velocity limit

K = 5,000 sec

^ '- -1
p limit = 15 sec Filter

-1
Ky = 500 sec Parameters

y limit = 1500 ft/sec2

Table 1. Parameter Values For Simulation of Braking Airplane
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III. Practical Considerations

Measurement of y

Realization of the controller of Figure 7 requires measurement

of y and p. Actually, y can be computed from measurement of w, v,

and z. This leads to a fairly complicated set of sensors. Wheel

speed is easily measured by some type of tachometer. Vehicle velo-

city can be established by measurement of a free-wheel speed. On

an automobile, this would require the addition of an expensive

free wheel; but on an airplane, a nose wheel could be used as a

free wheel. Including z in the computation of y produces further

difficulties. If the free wheel is placed on the strut, then v-z

can be measured as a single wheel speed. If not, z must be estimated

by other means, any of which would probably be expensive.

To alleviate this problem, let us examine how y is used by

the controller in search for alternate measurements which might

yield a more practical solution. First, y is used to drive the y

filter. Actually, all that is needed here is a signal which is

changing in the same direction as y. Almost all rapid changes in

y are due to changes in wheel speed w. This is especially true if

the perturbation frequency is chosen well above the resonant fre-

quency of the strut so that the strut does not respond to the per-

turbations. Hence -w can be used in place of y for the y filter.

Secondly, y is used in comparison to y for brake pressure

actuation. Here again, wheel speed could be used, but y then must

be the set point for wheel speed which produces peak-mu. Our

argument for limiting slip-velocity in extreme situations by the
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Ymax setting now fails. To correct this situation, an estimated

velocity v could be used along with w to provide the actuator

signal. Inaccurate measurement of v (i.e., a slowly varying bias)

should not degrade performance since the adaptive controller would

respond to this as it would to a slowly varying yp on the mu-slip

curve. An initial v could be established from wheel speed prior

to actuation of brake pressure. This could be integrated downward

by a deceleration measurement or proportional p which is an average

developed p. Of course on an airplane, the free nose wheel speed

could be used for v.

The above ideas were tested on the previous simulation and no

significant degradation in performance was noted.

Measurement of p

The measurement of p for the p filter poses somewhat of a

practical problem since a signal is needed for each braking wheel

in order that each wheel ride the peak of its mu-slip curve. How-

ever, a calibrated measurement is not necessary since the measured

signal needs only to change with changing mu, that is, a slowly

varying bias is again insignificant. Since the developed ground

force must be transmitted to the vehicle through the wheel bearing,

it may be feasible to mount a pair of strain gauges near the

bearing, positioned so that vertical forces transmitted by the

bearing to the vehicle are cancelled while horizontal forces are

cumulative. Although this idea has not been tested, it is believed

that experimentation is warranted.
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Figure 10 portrays the strain gauge configuration for both

(a) a wheel rotating with an axle such as the rear wheels of an

automobile and (b) a wheel rotating on a stud such as the front

wheels of an automobile. Strain gauges A and B are strained in

opposite directions for a horizontal force and in the same direction

for a vertical force. Thus, a horizontal force will unbalance the

bridge, while a vertical force will not unbalance the bridge.

Actuator Dynamics

Equation (18) implies that brake pressure can be varied

algebraically, with the input signal (y-y+6). To study the effect

of some lag between actuator input and developed brake pressure,

the following first order actuator was tested in the simulation:

P = -bP + bG(y-y+6), 0_PP (22)max

Figures U and 12 show the effect of this actuator lag for b = 500

and b = 50, respectively. These correspond to actuator rolloff

frequencies of about 80 hz and 8 hz. As expected, the sluggishness

of the actuator certainly downgrades peak riding performance by

greatly increasing the magnitude of slip oscillation about yp.

The degradation in performance caused by the sluggish actuator

can be largely overcome by feedforward around the y integrator.

This gives the actuator lead information about y, enabling the

actuator-set point combination to respond more quickly. Figure

13 is a repeat of Figure 12, except that the actuator input

is (y-y+6+0.005T).

Interface With Pilot or Driver

The adaptive braking system is easily interfaced with conven-

tional operator controls, such as a foot pedal. If Pmax' the limit
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on brake pressure, is taken as the operator's input, then peak

riding will occur only when excessive input is applied.

For example, suppose the operator applies enough pedal pres-

sure to produce rapid, but not maximum deceleration on dry pave-

ment. The controller will operate to the left of the peak as

shown in Figure 14. If wet pavement were encountered, the wheels

would lock. However, the adaptive controller automatically rides

the peak of the wet mu-slip curve. Figure 14 illustrates

the dry-to-wet and wet-to-dry transitions when the operator

commands an average deceleration.
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Conclusions

A peak-riding adaptive controller for minimum dis-

tance braking has been described. Each wheel is controlled

independently and rides the peak of its mu-slip curve.

Simulations show that the controller operates as predicted

by the theoretical derivation.

Although development work must be done to perfect

a practical system, the controller presented here is

applicable to any land vehicle which uses wheel braking for

deceleration of the vehicle. With some modification, the

controller is compatible with relatively sluggish brake

actuators. The controller interfaces easily with conven-

tional braking schemes (i.e. foot-pedal), so that slow

decelerations are obtained in the normal manner.
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V M mass of vehicle
v velocity of vehicle
w angular velocity of wheel

M I inertia of wheel
R rolling radius of wheel
T brake torque applied to wheel
f ground force tangential to

_ _____ ground

Figure 1. Simplified braking model.

dyry

_ a~~o , t ~Y
Yp Yp

Figure 2. Typical mu-slip data for (a) dry pavement.
(b) Wet pavement.
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Figure 3. Simplified process for slip-velocity
control problem.
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Figure 5. Differentiated mu slip curve.
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Figure 6. Braking airplane model.
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Figure 8. Mu-slip trajectory for wet to dry pavement.
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Figure 9. Mu-slip trajectory for dry to wet pavement.
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Figure 10. Strain guage sensor configuration A and B.
(a) Rotating axle. (b) Wheel rotating on stud.
(c) Bridge and differential amplifier.
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Figure 11. Mu-slip trajectory with 80 hz. actuator.
(a) Wet to dry pavement.



Figure 11. (b) Dry to wet pavement.

Figure 11. (b) Dry to wet pavement.
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Figure 12. Mu-slip trajectory with 8 hz. actuator.
(a) Wet to dry pavement.
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P

Figure 12. (b) Dry to.wet pavement.
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Figure 13. Mu-slip trajectory with 8 hz. actuator and

Figure 13. Mu-slip trajectory with 8 hz. actuator and
0.005 j feedforward to the actuator. (a) Wet to dry
pavement.
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A'

(b) Dry to wet pavement.Figure 13.
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Figure 14. Mu-slip trajectory for less than maximum
deceleration commanded by the pilot. (a) Wet to
dry pavement.
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t

(b) Dry to wet pavementFigure 14.
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APPENDIX A. DETAILS OF ANALOG SIMULATION

The system of Figure 7 with the parameter values in

Table 1 was simulated on an EAI TR-48 analog computer.

Table 2 defines the symbols used in the computer diagrams

of this appendix. Figures Al through A3 give scaled com-

puter diagrams of the simulation. Integrator gains and

potentiometer settings are given in Table 3.

Amplifiers with + 3 volt limits were constructed by

placing back-to-back 3 volt zener diodes between the output

and summing junction of an ordinary amplifier. Other limits

were formed with conventional diodes and ungrounded pots.

A time scale factor of 50 was needed to slow re-

sponses for plotting on an X-Y recorder. Three dimensional

plots were formed by rotating the y and t axes by ?=17©,

while holding the u axis vertical. Signals to the X and Y

channels of the recorder were:

Y = u + t cos X + y sin X

X = y cos A - t sin A

Axes and mu-slip curves were added to the plots auto-

matically under control of the SCC-650 digital computer which

is linked to the TR-48 via the UMR hybrid interface.
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x

y io

x z
-Zo

Y

x

y

x ©y
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o4 Z

x I

yTABLE 2.

TABLE 2.

z

z = -(x + lOy)

Z = -X

t
z = - f(x+lOy)dt +z0

y = X x (O ? A l1)

z=+xy/10

z = 5 for x< (O
- for x> OJ

z = -(x+lOy) but
VL< zzVh·

summer
(summing amp)

sign changer

integrator

potentiometer
(pot)

multiplier

comparator

limited summer

Symbols used in analog computer diagrams.

SYMBOL
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POT NO. SETTING TABLE 1 DATA CATEGORY

1 v(O)/1OO 1.000

2 g/5000 .006

3 R w(0)/1O0 O.

4 MgR2 /5000I 1.000 Process
Parameters

5 GKbR/1500I 1.000

6 GKbKt/300Ms .150

7 Mg/M S 10 4 .100

8 - .200

9 - .200

10 Cs / lO O M
s

.098

11 Ks/lOOOM
s

.600

12 peak-mu adj. .330

13 final slope adj. O. Mu - slip
Curve

14 min-mu slip adj. .096

15 kinetic mu adj. .040

16 K /5000 1.000
17

1818 KY/500 1.000 Controller
619 yParameters

20 KKK/10 1.000

21 - .250

22 fp/250 = 4/tp(ms) .320

23 ap/25 .100

REAL TIME N = 500 Time-scale

SLOWED BY 50 N = 10 data

Pot settings and integrator gains.TABLE 3.
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APPENDIX B. ADDITIONAL SIMULATION DATA

Numerous simulation runs were made to study the

effect of various parameters. Because of the large dis-

tribution list for this report, actual data is not pre-

sented here to conserve reproduction costs. However,

observations from this data are reported in this appendix.

Perturbation Signal

Amplitude of the perturbation signal is not critical.

As expected, the larger the perturbation, the larger the

variation of slip about yp. However, the variation of slip

is not proportional to perturbation amplitude. The

curvature of the mu-slip curve at the peak is the predomi-

nant factor in limiting slip variations. For example,

doubling the perturbation amplitude may cause only a 10 o'/o

increase in slip variation about yp

On the other hand, if the perturbation amplitude is

too small, the controller may drift slowly off the peak,

then suddenly return to the peak after reaching a point where

the slope of the mu-slip curve is large enough to correct 1.

Perturbation frequency is not critical, but is limited

on the high side by the speed of the actuator. If the

frequency is within the bandpass of the strut, then coupling

with the strut dynamics causes unnecessary vibration and
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fatigue, even though peak riding is still maintained.

Another disadvantage of low frequency perturbation is that

adaption to sudden changes in pavement conditions is

necessarily slower, since the rate of change of 1 depends

heavily on the amplitude of y.

The shape of the perturbation signal is not criti-

cal. In fact, random perturbations are quite effective,

especially if high frequency noise is used. Natural noise

in the actuator, tire dynamics, and/or brake lining-drum

irregularities may actually be sufficient perturbation in a

practical system.

Strut Dynamics

The strut in the simulation has a resonant

frequency of about 4 hz. and a damping coefficient of

about 0.2. The strut deflection in the steady state

is proportional to the developed ground force. Thus,

large oscillatory swings in the strut occur when sudden

changes in the pavement are encountered. The adaptive

controller is quite capable of peak-riding even though the

strut is oscillating to and fro at rates as high as 20

ft./sec.

If, however, a pavement transient occurs at low

vehicle velocity (i.e. less than 20 ft./sec.), the strut

dynamics do have an effect on the peak-riding performance.
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For example, if z = v, then y is limited by v - z which may

be less than yp. Fortunately, this situation is self-

correcting since the developed ground force is automatically

reduced for low slip, which in turn releases the strut and

causes z <0.

Controller Parameters

Controller performance is affected primarily by

the gain K which determines the rate at which W changes.

If K is too small, adaption is slow because much time is

required for Y to reach the peak of the mu-slip curve. On

the other hand, if K is too large, X never reaches steady

state near yp, but oscillates about yp. no longer functions

as a set point, even though Wavg does approach yp. Large

oscillations in r essentially make the actuator operate in

an on/off mode which reduces peak-riding efficiency since

larger swings in y occur about yp.
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APPENDIX C. MU - SLIP ANOMALY

Intuitively, one would expect that the coefficient

of friction between tire and pavement would be dependent

on slip - velocity as shown in Figure C1, where ps and pk

are the familiar static and kinetic coefficients of fric-

tion. Figure C1 is contrary to measured mu-slip data for

a rolling tire which usually produces a peak mu at other

than zero slip. In an attempt to explain this anomaly, let

us assume the tire-pavement characteristics in Figure C1

and generate measured mu - olo slip data under the assump-

tion of constant normal force and constant radii, when in

our measurement environment such assumptions are not valid.

Consider that measurements are made from the

vehicle shown in Figure C2. The rear wheels are braking

wheels, while the nose wheels are non-braking or free wheels.

The nose wheels will be used as the reference velocity

for measuring o/o slip.

With f = dW = O, Wb and Wn assume the total weight,

Wt, of the airplane (i.e. Wb+Wn=Wt) in the ratio Wb/Wn

xn/xb so that the resulting torque is zero. With this

weight distribution, Wb = c Wt and Wn = (l-c) Wt where

c = xn/(xn+xb). The tires assume rolling radii Rb and Rn

when Wb and Wn are the respective normal forces. When

slip is measured experimentally from wheel tachometer

readings, the rolling radii will be assumed Rb and Rn when
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actually they are not. The actual rolling radii, rb and rn,

can be more accurately expressed as

rb = Rb (1 + Kb dW/Wt) and
(Cl)

rn = Rn (1 - Kn dW/Wt),

where Kb and K
n
are dimensionless tire spring coefficients

and dW is the change in weight distribution between the tires

due to the developed force f. dW is the increase in nose

wheel normal force and the decrease in rear wlheel normal

force ( the total normal force remains Wt). No dynamic

response due to a sudden applied force f is considered here,

only the steady state radii.

Even with f applied the moments must sum to zero:

f x
h

- dW xn - dW xb = O, or:

dW = a f where a = Xh/(Xn+xb). (C2)

Now if pa is the actual coefficient of friction, then

f = Pa(Wb-dW). (C3)

Under the assumption that the rear ,,7heel normal

force is Wb (it is actually Wb-dW), mu would be measured as:

Pm = f/Wb. (C4)

(C2) and (C3) can be solved simultaneously for dW/Wb =

apa/(l+a;)a) and f/Wb = pa/(l+Ja). Thus, the measured mu

is related to actual mu by:

_ _ __a Xh
| = a where a = . (C5)

1 + a Pa X+b

At this point we also have:

dW/Wt = acPa/(l+aa) where c = n (C6)
Now, the actual tire slip ratio is v/V where v is the

Now, the actual tire slip ratio is v/V where v is the
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relative velocity between tire and pavement and V is the

airplane velocity. Since the nose wheels are not slipping,

V= LJrn . Also, v= W r - br
b
. Thus:

v 1 G brb r brb = b 1 v
V Q nrn n (C7)

On the other hand, assuming constant radii and

measuring the angular wheel speeds, measured slip ratio is

aC =1 W bRb
m 60nRn 

(C7) into (C8) gives an alternate expression:

1 Rb rn

am = 1 - (1- V) rb Rn (C9)

(C1) into (C9) gives still another:

1v -KndW/Wt

m 1 - (1- V) l+KbdW/W t ; (C10)

and finally, (C6) into (C10) gives am as a function of

actual mu-slip data:

1- v(1- ) l+aPa(l-cKn) (Cl)
m V l+apa(l+cKb)

Thus (C5) and (Cll) where c is defined in (C6)

give the transformation from actual mu-slip data to

measured (under faulty assumptions) mu-slip data.

As an example, let the airplane data be: a=0.4,

c=0.9, Kb=.O5 and Kn=.5. Let us now transform the curve of

Figure C1 with ps=1.0, 'k=0. 5, and vk=10 ft/sec into

measured mu-slip data for airplane speeds of V=100,50, and



43

20 ft/sec.

The above data into (C5) and (Cll) produces the

curves shown in Figure C3. Note that the entire portion

of the curve from cm=0 to peak um was generated by v=O

and is independent of V, the velocity of the airplane.

Hence, the measured slip at which the peak mu occurs is

dependent only upon airplane geometry (i.e. a and c);

tire elasticity, inflation, temperature,etc. (i.e. Kn and

Kb); and the static coefficient of friction between tire

and pavement (i.e. )s) which is also a function of tire

inflation, temperature, etc. along with pavement conditions

(i.e. wet, dry, ice, etc.). The remainder of the measured

mu-slip curve is dependent upon airplane velocity along

with all of the aforementioned factors.

The above argument supports the hypothesis that

typical mu-slip curves used by investigators in braking

studies may be more dependent upon measurement methods

(and assumptions) than upon the actual physical phenomena.

However, experimentation is necessary before concluding

that the above argument offers even a partial explanation

of the mu-slip anomaly.

t Note that Kb=.05 implies that the rear tire rolling radius

would increase 4.59o if the entire load Wb=.9Wt were removed.

Also, Kn=.5 implies that the front tire rolling radius would

decrease 5?o if its steady load of Wn=.lWt were doubled.
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